
Kinetic Action: Performance Analysis of Integrated Key-Value Storage
Devices vs. LevelDB Servers

Manas Minglani, Jim Diehl, Xiang Cao∗, Bingzhe Li, Dongchul Park†, David J. Lilja, and David H.C. Du
University of Minnesota - Twin Cities, Minneapolis, Minnesota, USA

{mingl001, jdiehl, lixx1743, lilja, du}@umn.edu
∗School of Computing and Information Systems, Grand Valley State University, Allendale, Michigan, USA

caox@gvsu.edu
†Computer & Electronic Systems Engineering, Hankuk University of Foreign Studies, South Korea

dpark@hufs.ac.kr

Abstract—With the rise of cloud storage and many data
intensive applications, there is an unprecedented growth in the
volume of unstructured data. In response, key-value object
storage is becoming more popular for the ease with which it
can store, manage, and retrieve large amounts of this data.
Seagate recently launched Kinetic direct-access-over-Ethernet
hard drives which incorporate a LevelDB key-value store
inside each drive. In this work, we evaluate these drives using
micro as well as macro benchmarks to help understand the
performance limits, trade-offs, and implications of replacing
traditional hard drives with Kinetic drives in data centers and
high performance systems. We perform in-depth throughput
and latency benchmarking of these Kinetic drives (each acting
as a tiny independent server) from a client machine connected
to them via Ethernet. We compare these results to a SATA-based
and a faster SAS-based traditional server running LevelDB. Our
sample Kinetic drives are CPU-bound, but they still average
sequential write throughput of 63 MB/sec and sequential
read throughput of 78 MB/sec for 1 MB value sizes. They also
demonstrate unique Kinetic features including direct disk-to-disk
data transfer. Our macro benchmarking using the Yahoo Cloud
Serving Benchmark (YCSB) shows that mid-range LevelDB
servers outperform the Kinetic drives for several workloads;
however, this is not always the case. For larger value sizes, even
these first generation sample Kinetic drives outperform a full
server for several different workloads.

Keywords— Performance Evaluation, Data Center Storage
Architecture, Key-Value Store, Cloud Applications

I. INTRODUCTION

The amount of digital data is growing at an extremely

rapid pace, and it is estimated that its volume will grow at

40%-50% per year [1]. Most of this data explosion is due to

unstructured data. According to predictions from International

Data Corporation (IDC), 80% of the 133 exabytes of global

data growth in 2017 will be unstructured [2]. Managing such

an enormous amount of data is a challenging task.

Most of the data in existing systems is stored and accessed

using traditional file-based or block-based systems [3]. Un-

fortunately, these traditional systems are becoming inefficient

as file-based access and hardware requirements limit their

scalability. Therefore, there is a need for a data access method

that is flexible and capable of horizontal scale-out [4].

Object storage overcomes limitations of file-based systems

by offering scalability and being software defined [5]. The

data is communicated as objects rather than files or blocks,

and additional metadata can be stored alongside the object

[3]. Object storage is flat structured and prevents higher-level

applications from needing to manipulate data at the lowest

level. Therefore, object storage has the flexibility to scale-out

horizontally. When a unique identifier, called a "key," is used

to access the object, or "value," this form of storage can be

called a key-value store (KV store).

There are several key-value stores being deployed to support

large websites such as Dynamo at Amazon [6], Redis at

GitHub [7], and RocksDB at Facebook [8]. All these systems

store ordered <key, value> pairs. Even though key-value stores

address the problem of scaling and managing huge amounts

of data for the above systems, the existing key-value stores

also have several limitations. They run on top of multiple

layers of legacy software and hardware, such as POSIX, RAID

controllers, etc., designed for file-based systems [5]. Also,

these huge systems consume significant amounts of power and

rack space [9].

To help overcome these hardware and software limitations,

Seagate has announced a new class of hard drives called

Kinetic drives [5]. These drives have a built-in processor that

runs a LevelDB-based key-value store directly on the drive

[10]. Rather than the typical SATA or SAS interface, Kinetic

drives communicate externally via TCP/IP over Ethernet. Each

drive acts as a tiny server in itself. An important function

of the drives is direct P2P (Peer-to-Peer) transfer that allows

direct data transfer from one drive to another via Ethernet

without the need to copy data through a storage controller or

other server [11]. By replacing hardware and software layers,

Kinetic drives can reduce the cost and complexity of a large-

scale object storage system.

In this work, we seek to better understand the key function-

alities, features, and performance of the drives. We use this in-

formation to compare Kinetic drives with other LevelDB-based

servers and to derive insights about the possibility of replacing

traditional hard drives with Kinetic drives. Furthermore, the

specification sheets [12] do not provide a detailed analysis

of the throughput, latency, and other features, especially in

comparison to the other LevelDB-based servers.

We also study the ease of programmability of the Kinetic

drives and share our experiences. To the best of our knowledge

there are no prior works which evaluate Kinetic drives this

thoroughly. To understand several salient features including

P2P transfer, "Get," "Put," and others, we develop several tests

501

2017 IEEE 23rd International Conference on Parallel and Distributed Systems

978-1-5386-2129-5/17/31.00 ©2017 IEEE
DOI 10.1109/ICPADS.2017.00072



which we use to identify bottlenecks and limitations of the

drives.

Overall, these tests help by giving us experience using

this latest class of drives from Seagate as well as help us

determine throughput bounds and performance characteristics

in different scenarios. Beyond academic interest, we believe

the information in this paper may be useful to system-level

engineers at data centers and for High Performance Computing

or Big Data and Analytics systems.

Our contributions are the following:

• Conduct tests on Kinetic drives to understand the through-

put and performance bottlenecks, limits, trade-offs, and

characteristics

• Compare key-value store hardware (Kinetic drives) with

servers running the LevelDB key-value store on conven-

tional hard drives using micro and macro benchmarks

(YCSB)

• Share the experience of using the Kinetic platform

The rest of the paper describes the configuration of the

systems, performance results, and derived insights.

II. KINETIC PLATFORM — MOTIVATION AND

ARCHITECTURE

Kinetic drives are the latest class of hard drives from

Seagate and have a similar form factor to a conventional

3.5" drive. However, Kinetic drives are fundamentally different

from traditional drives in two ways: Ethernet connectivity and

an internal processor that converts the storage drive to a key-

value store [13].

Each drive has two Ethernet ports (1 Gbps each) to transfer

data to the clients or other drives using TCP/IP over Ethernet.

The ports are for fault tolerance, and only one should be used

at a time. Newer models (2nd generation) are expected to have

two 2.5 Gbps ports. However, after inquiring, these newer

models are not available for the general public, so we cannot

test them. Furthermore, Kinetic drives do not use the SCSI

interface and instead have a key-value interface. Applications

interact with the drives directly using this interface and a

standard Ethernet connection. IP addresses are assigned to the

drives by a DHCP server [13]. The use of Ethernet allows

the storage system to be expanded without the need to install

a separate Storage Area Network. Figure 1 is a simplified

comparison of the hardware and software stack of a traditional

storage system with that of a Kinetic system.

The second major benefit of using these drives is that they

encapsulate the concept of in-storage processing by running

a LevelDB-based key-value store in the drives. There is a

single-core System-on-Chip (SoC) processor inside the drives

Fig. 1. Software stack of server with traditional drives vs. Kinetic drives.

that runs a custom LevelDB and manages the data on the

disk itself. This can reduce the software I/O complexity for

applications and simplify the storage rack by eliminating the

need for separate storage controllers [9].

Seagate provides a software platform to help write programs

for these drives. This Kinetic API comes with libraries for

several popular programming languages, a simulator, installa-

tion instructions, some test utilities, and some basic test code

[5]. The simulator allows the test and custom programs to

run without the actual drives (but we run all our experiments

on actual drives). The applications or programs are created

using the functions and protocols defined in the API library.

The protocols are responsible for the actual connection and

communication with the Kinetic drives via messages (Figure

2). The Linux Foundation now maintains this Kinetic API [5].

The drives have a built-in capability to support multiple

threads and sessions. While the Kinetic API abstracts away

most of the internal details of the drives, there are set limits

to certain parameters. These limits are listed in Table I. Table

II lists the main API commands used to interact with the

key-value store on the drive. In addition, the API allows

the programmer to perform write synchronization in several

different modes as described in Table III. These modes allow

the programmer to force immediate synchronization or allow

the drive to control the write operations.

Moreover, the Kinetic drives come with unique features,

such as P2P transfer, which set these drives apart from regular

hard drives. With P2P transfer, one drive can directly transfer

its data to another drive via Ethernet; hence, it could be

utilized for direct data replication. The process initiates when

a client issues a "P2P Put" or "P2P Get" command to a

particular Kinetic drive. This drive takes control of the process

and automatically (without the client’s involvement) performs

"Put" (write) or "Get" (read) operations to/from the target

drive using Ethernet. After this process completes, both the

drives have identical copies of those key-value pairs. These

instructions avoid several stack layers typically required to

TABLE I
KINETIC DRIVE LIMITS

Device Feature Limit
max Key Size 4096 Bytes

max Value Size 1 MB
max Version Size 2048

max Tag Size 128
max Connections 100

max Outstanding Read Requests 30
max Outstanding Write Requests 20

max Message Size 1 MB
max Key Range Count 200

max Identity Count 1000
max Pin Size 200

Fig. 2. Message protocol for Kinetic drive.

502



transfer data and can drastically reduce overall system I/O.

In the following sections, we describe how we use this

Kinetic API to evaluate the performance trade-offs, limits, and

behavior of these sample drives.

III. CONFIGURATION

In this section, we cover the three system configurations we

employ to test and evaluate the Kinetic drives and compare

them with LevelDB-based servers.

To benefit from the commands described in Table II, we

have to leverage the Kinetic API. This API is installed in

the client and is used to send commands to different Kinetic

drives, which logically act as tiny independent servers as

shown in Figure 3. The Kinetic API is designed for several

programming platforms including C, C++, Java, and Python.

Our testing primarily uses the C library of the API.

The client machine is a Dell R420 running Ubuntu Server

14.04 LTS 64-bit (kernel 3.13) on two quad-core Intel Xeon

E5-2407 CPUs @ 2.20 GHz and 12 GB of RAM. This ma-

chine uses a 10 Gbps Ethernet PCIe network card to connect

to a Kinetic disk enclosure containing four Kinetic sample

drives. Internally, this enclosure contains redundant Ethernet

switches with 1 Gbps ports for the Kinetic drives and a 10

Gbps uplink port. The Kinetic enclosure also has a separate

Ethernet connection to allow access to a web interface that

allows basic management of each drive (power cycle the drive,

see its IP address, etc). The drives are model ST4000NK001,

and we upgraded the firmware to version 03.00.04 using one

of the included utility programs. These disks are 4 TB, 5900

RPM, and have 64 MB of disk cache plus another 512 MB

of on-board RAM to run the modified versions of Linux and

LevelDB on the added Marvell 370 SoC [12].

To compare the Kinetic drives with LevelDB-based servers,

we set up two other systems: Server-SATA and Server-SAS.

Server-SATA has the same specifications as the Kinetic client

system described above plus has LevelDB installed and two

additional traditional SATA drives, separate from the OS drive,

connected directly to the motherboard via SATA. These two

extra SATA drives, Seagate model ST4000VN000, are chosen

because they are similar to the Kinetic drives, i.e., 4 TB, 5900

RPM, and 64 MB of disk cache.

Server-SAS also has LevelDB installed but is a more pow-

erful and modern system. This machine runs Ubuntu Server

14.04 LTS 64-bit (kernel 4.1) on two six-core Intel Xeon E5-

2620 v3 CPUs @ 2.40GHz and 64 GB of RAM. There is a

PCIe LSI MegaRAID SAS-3 3008 adapter connected to an

external Dell MD1400 disk enclosure containing 11 Seagate

model ST6000NM0034 Enterprise Capacity SAS drives. Each

drive is 6 TB, 7200 RPM, and has 128 MB of disk cache.

For both Server-SATA and Server-SAS, LevelDB is installed

and db_bench.cc (or a slightly modified version) is run on the

various drive configurations from the same machine, i.e., the

client benchmark is run against a local server. For tests using

two or more drives, Linux software RAID-0 is configured with

default mdadm settings offered by the GNOME Disk Utility.

The target location is then formatted with default ext4 settings

Fig. 3. Logical view with Kinetic drives as independent servers.

and mounted for use. A detailed description of how Server-

SATA and the Kinetic client machine are used for YCSB

testing is included in Section VIII.

IV. METHODOLOGY AND RESULTS FOR KINETIC DRIVES

This section details a variety of our tests executed on Kinetic

drives. Performance results comparing Kinetic drives with

LevelDB-based servers are presented in later sections. Our

attempt is to first inform the readers about the raw performance

metrics of Kinetic drives. This will help system engineers

in designing their systems. We present the results of various

random and sequential read and write tests for different value

sizes as well as our experience with the Kinetic drive’s unique

P2P commands.

A. Definitions

Before delving into the tests, we define important terms

which are used throughout the paper.

Sequential Key Order Writes (Sequential Order Writes):
Write requests are issued by the client in increasing key ID

order, i.e., from key number 1 to key number n.

Random Key Order Writes (Random Order Writes):
The client issues write requests in random key ID order.

WriteBack-Flush: This write operation issues n− 1 com-

mands in the asynchronous WriteBack mode and then the nth

command is written in Flush mode to make all the commands

persistent. This series of repeated asynchronous WriteBack

writes followed by a single Flush command is what we call

WriteBack-Flush mode.

B. Comparison of WriteThrough vs. Flush Mode

There are many applications, e.g., banking, that cannot

risk data loss or inconsistency and must immediately have

data stored persistently. Therefore, the Kinetic drive’s multiple

write modes, depending on the application, can be quite

useful. There are two different modes for forcing synchronous

write operations, WriteThrough and Flush, as mentioned in

Table III. Of the two, WriteThrough operations tend to be

faster than pure Flush operations. Flush mode must make

sure all previously written commands in the asynchronous

WriteBack mode are made permanent. However, requests

made in WriteThrough mode are made permanent without

checking the status of any other command.

Results of a test to illustrate this difference are shown in

Table IV. In this test there are two variations, one where all

writes are issued in WriteThrough mode and one where all

writes are issued in Flush mode. In both cases, each write (or

put) is made persistent before returning a completion signal

503



TABLE II
COMMANDS AND FUNCTIONS OF KINETIC DRIVES

Command Function
put Writes the specified key-value (KV) pair to the persistent store
get Reads a KV pair

delete Deletes the KV pair
getNext Gets the next key that is after the specified key in the sequence

getPrevious Gets the previous entry associated with a specified key in the sequence
getKeyRange Gets a list of keys in the sequence based on the given key range
getMetadata Get an entry’s metadata for a specified key
secureerase Securely erases all the user data, configurations, and setup information on the drive
instanterase Erase all data in database for the drive; this is faster than secureerase
setSecurity Set the access control list for the Kinetic drive

P2P Get Kinetic drive reads directly from another Kinetic drive
P2P Put Kinetic drive writes directly to another Kinetic drive

TABLE III
DIFFERENT WRITE MODES OF KINETIC DRIVES

Kinetic Write Mode Description
WriteThrough The request is made persistent before returning; this does not affect any other pending operations

WriteBack The requests are made persistent when the drive chooses or when a FLUSH is sent to the drive
Flush All the write requests that are pending and are not written yet will be made persistent to the disk

to the application. However, for Flush mode, the drives must

ensure that there are no pending write requests waiting to

be made persistent. For 10,000 key-value pairs and 100,000

key-value pairs, WriteThrough gives higher throughput than

repeated Flush mode writes. This illustrates that WriteThrough

should be used for synchronous writes, and it is bad program-

ming to repeatedly use Flush mode for multiple writes.

Since throughput depends on the write modes, value size,

and number of key-value pairs, we obtain higher throughputs

in the following tests than we do in Table IV.

C. Comparison of Throughputs for Write and Read Operation

To help programmers understand the basic performance of

these drives for various generic workloads, we test read and

write performance for KV pairs with different value sizes in

either random or sequential key order. In our terminology,

Sequential (or Random) Order Reads/Writes mean Sequential

(or Random) Key Order Reads/Writes.

Sequential Key Order Writes: This test consists of two

experiments. First, after Sequential Order Write (explained in

Section IV-A), the data is read back from key number 1 to

key number n sequentially for Sequential Order Read. Second,

after performing Sequential Order Write, the data is read back

in random key ID order for Random Order Read.

Figure 4 shows the throughput obtained from the Kinetic

drive for Random Order Read and Sequential Order Read of

up to 1 TB of data sequentially written by key order. Since the

write process is the same for both the experiments, it is shown

only once in the figure. We vary the size of the value from 120

bytes to 1 MB but keep the key size constant at 16 bytes. We

also keep the number of key-value pairs constant at 1,000,000.

Thus, the x-axis value-size multiplied by one million will give

TABLE IV
COMPARISON OF THROUGHPUTS FOR DIFFERENT WRITE MODES

Value Size Key-value pairs Flush WriteThrough
1 MB 10,000 5.41 (MB/sec) 8.99 (MB/sec)
1 MB 100,000 4.8 (MB/sec) 8.91 (MB/sec)

��

���

���

���

���

���

�	�

�
�

���

���
�
�

���

��	
�
�

���

���
�
�

���

���



���



���



���



�	�
�


���
�


	��
�


���
��


��	
��


���
��


���



��
��
��
��
	


��
��




��
��
�
��
��
��

����������

����������������
�������������� 
��� �!���� 

Fig. 4. Average throughputs of Sequential Order Write followed by Random
Order Read or Sequential Order Read for 1,000,000 key-value pairs with
varied value size and 16 byte key size.

the amount of data transferred for that particular portion of the

experiment (i.e., 120 MB for the leftmost points and 1 TB to

generate the points on the right).

We observe that the throughput increases with the value

size. To understand this trend, we have to understand the

capability of the Kinetic drive’s internal processor, the client’s

processing capability, and throughput computation. The client

sends requests to the Kinetic drive as fast as possible and can

easily saturate the drive with messages. Due to the Kinetic

drive’s limited internal processing capability and the overhead

to handle each request, it can process only a certain maximum

number of read or write requests per second. When small

value sizes are used, overhead dominates the Kinetic CPU

and results in low throughput. As the value size is increased,

the ratio of wasted overhead to data sent is improved and so

is throughput. As is expected for hard disk technology, we

also observe that Random Order Read throughput is lower

than Sequential Order Read, because the drive’s head has to

be repositioned on the platter more often for Random Order

Reads than Sequential Order Reads.

To save space, results for Random Order Reads after Ran-

dom Order Writes on Kinetic drives are incorporated into the

LevelDB server comparison in Figure 9.

504



��

���

���

���

���

���

�	�

�
�

���

���

����

��� �	�
�

���
�

	��
�

���
��

��	
��

���
��

��
�

�
��
�	

�	
��
��
��

��
��

��
��
��

��
 !

"�#���$�%�

&����

Fig. 5. Maximum write throughput for various value sizes.

D. Maximum Write Throughput for Various Value Sizes

While the previous subsection measured average through-

put, application designers may often require the maximum

performance that can be extracted from these drives. Based on

the peak performance of the individual drives, the system en-

gineers can estimate and try to optimize the raw performance

that an entire system will be able to deliver. In this test we

find the maximum write throughput that can be obtained for

different value sizes with each key size equal to 16 bytes. Each

data point on the x-axis in Figure 5 is a different experiment.

For each experiment, we vary the number of key-value pairs

and perform Sequential Order Write as explained in Section

IV-A. The number of key-value pairs required to achieve

the maximum throughput is different for all the experiments.

Maximum write throughput increases with value size as shown

in Figure 5. This trend is again because the CPU-bound (as

demonstrated in Section IV-F) Kinetic drive wastes fewer

resources on overhead with larger value sizes.

E. Impact of Key Size on Throughput Performance

So far we have varied the value size of the key-value pairs,

but now we vary the size of the keys themselves. This gives

application programmers an understanding of what to expect

as the number of keys reaches its maximum or if they wish to

use large keys to embed metadata or otherwise organize the

KV pairs.

Figure 6 depicts the impact different key sizes have on

write throughput. The comparison is made when KV pairs are

written sequentially in WriteBack-Flush mode (as explained

in Section IV-A) with two different key sizes, 4 KB and 16

Bytes. 1,000,000 key-value pairs are sequentially written for

��

���

���

���

���

���

�	�

�
�

���

��
���

��	
���
���

���
���
���

���
�

���
�

���
�

	��
�

�	�
��

���
��

	��
��

��	
���

��	
���

���
���

���
�

��
��
��
��
	


��
��




��
��
�
��
��
��

����������


������������

������	���������

Fig. 6. Average throughputs for minimum and maximum key size.

each value size from 120 bytes to 1 MB (the maximum value

size).

While Seagate has a modified implementation, based on

our understanding of LevelDB, we assume that the better

throughput for smaller keys depends on the drive’s internal

RAM. Larger keys occupy more of the drive’s internal RAM.

The drive only has 512 MB of RAM for the entire onboard OS

and LevelDB system. In this RAM, LevelDB keeps track of

the largest and smallest keys of each SSTable. Each SSTable,

which is a data structure that stores sorted KV pairs on disk, is

2 MB by default in stock LevelDB. As the value size of the KV

pairs increases, fewer KV pairs fit in each fixed-size SSTable.

As the number of SSTables increases to hold the larger values,

there are more largest/smallest keys to maintain. When the key

size is very large, this large number of largest/smallest keys

no longer fits in the available memory. This introduces more

disk activity which slows the overall throughput.

F. Throughput for P2P Transfer

This section presents the results for a unique feature,

P2P transfer, which allows data transfer between two disks

without extra network traffic or hardware burden on a separate

machine. This feature is especially useful for propagating fault

tolerance copies such as for replication. For example, if you

want three separate identical copies of some key-value pairs in

case one drive fails, you can have the Kinetic drives use P2P

transfer in the background to spread these redundancy copies

directly to other drives.

The client issues a P2P Get or P2P Put command to a

Kinetic Drive (KD-Init) along with the IP address of the target

Kinetic Drive (KD-Target). KD-Init establishes a connection

over Ethernet to KD-Target and initiates put/write or get/read

operations based on the command sent from the client. Once

the operation is successfully completed, both the drives have

these same key-value pairs. This data copying process takes

place without interference from the client. The client only

issues the initial instruction to begin the P2P transfer.

In Table V, we show the throughput and internal Kinetic

CPU load while using this feature for small and large values.

First, we write 512 key-value pairs to KD-Target. After that,

we perform the P2P Get operation in which KD-Init copies

512 key-value pairs, each with 1 KB or 1 MB value size, from

KD-Target. We see in Table V that the internal processor’s

utilization is almost 100% when P2P transfer is taking place.

Figure 7 shows the results of a similar experiment using the

P2P Put command to write 25,000 KV pairs for various value

sizes. We can see that non-P2P Put from the client machine

offers better throughput. However, if the client first has to read

data from a different Kinetic drive before writing, P2P is more

efficient and less burdensome for the client and the network.

TABLE V
THROUGHPUT FOR P2P TRANSFER

Value Size Read No. of KV pairs Internal CPU

1 KB 0.43 (MB/sec) 512 99.01%

1 MB 22.45 (MB/sec) 512 98.02%

505



��

�


���

��


���

��


���

��


���

��


�
�

���
���
���

���
	
�
���

���
	
�
���

�	�



�	�




	�



�	�



��	
�


��	
�


�
	
�


���
	�


���
	�


���
	�


�	�



��
��
��
��
	


��
��




��
��
�
��
��
��

����������

�����	����������
���	����������

Fig. 7. Throughputs of client-based Kinetic write vs. P2P put for 25,000 KV
pairs.

G. Kinetic Drive Key Not Found Search Times

In this section, we study the time it takes when the searched

keys are "not found" in a Kinetic drive. This aspect is

important when a large number of drives are used to create

a system. There is a strong possibility that users search for

key-value pairs and may not find them in a particular Kinetic

drive. Therefore, the users will have to search other Kinetic

drives. The time it takes to perform the operation of searching

key-value pairs in a particular server or Kinetic drive can affect

the entire system’s performance.

With 3.7 TB of Data Written: For the first experiment,

we write 3.7 TB of data in sequential order in the form of

3,700,000 KV pairs with keys of 16 bytes each and value

size of 1 MB. All the keys are unique and "kinetic-c-util" (an

included test utility) is used to generate data for each of the 1

MB values. Following that, we request 100,000 non-existent

key-value pairs from the Kinetic drive in sequential order. We

ensure that the requested keys do not exist in the Kinetic drive.

For each request, we record the time it takes for the Kinetic

drive to return the status that the requested key is not found

in the drive. We plot the "not found" response time of each

request in Figure 8. We see that nearly all (99.916%) of the

responses occur in one millisecond or 0.001 seconds, while

a small number of responses take two or eight milliseconds.

This implies there is mostly a network response time delay

and only occasional disk seek latency, if any.

We next repeat the same operation; however, we request

nonexistent KV pairs in random order. Again, the results look

the same and are omitted. We also test the difference when

nonexistent keys are inside the range of the written keys (e.g.,

write key 1 and key 3 and search for key 2 instead of key

4), but we see the same extremely low response time plot.

Finally, we experiment with a smaller value size than 1 MB,

but the results are generally the same. Small value sizes, such

as 4 KB, show a few more requests high enough to be disk

activity, but the overwhelming majority are still 1 ms. Because

all these tests provide similar results, we cannot determine the

effect of read or write randomness in searches for keys that

do not exist. However, we can conclude that the Kinetic drive

is able to quickly resolve unavailable key requests from its

memory even when the drive is full.

��

������

������

�����


������

�����

�� ������ ������ �
���� ������ �������

��
�
��
��
�	
�

��
��

�
��
�

��
��
�

���
��
��
��
��
�


����
�����
���������

���������

Fig. 8. Keys Not Found - 100k KV Pairs Searched in Random Order With
3.7 TB of Data Written in Sequential Order

These results make sense when you consider that LevelDB

stores KV pairs in sorted key order inside 2 MB SSTable

files. For each SSTable, the in-memory MANIFEST stores the

file name, the largest key, and the smallest key stored in that

SSTable. Because we are using a 1 MB value size in our KV

pairs, each SSTable can only store two KV pairs. Thus, for

1 MB values, the MANIFEST acts as an in-memory index

of every key stored, and requests for nonexistent keys can

be processed immediately no matter the order of the initial

writes or later reads. If the MANIFEST is not as helpful

in determining if the requested key is stored, e.g., when we

use smaller value sizes and search for keys in an overlapping

range, the next layer is a Bloom filter. Only in the rare instance

that the Bloom filter is unable to correctly determine that a key

is not stored (i.e., a false positive) does LevelDB actually have

to read the SSTable from the disk to check. We believe that

some of the 2 ms read times are Bloom filter checks, and only

the 8 ms searches involve actual disk accesses.

In summary, we can conclude that the time spent fulfilling

a request for each key not found is significantly less than

performing a successful read operation in the Kinetic drive

when using 1 MB value sizes. When a key is requested that

does not match the previously written keys, the in-memory

MANIFEST and a fall-back Bloom filter can rapidly report

the key as not found without the need for very many actual

disk accesses.

V. THROUGHPUT COMPARISONS OF KINETIC DRIVES AND

LEVELDB SERVERS

This section compares the throughput of Kinetic drives

against traditional servers running LevelDB (Server-SATA and

Server-SAS). We believe it is important to understand the

possible implications of replacing traditional hard drives with

Kinetic drives for various workloads and disk configurations.

As described in Section III, we have two different LevelDB-

based server systems. Server-SATA has 12 GB of RAM and

two extra 5900 RPM SATA disks with similar properties to

the Kinetic drives, and the faster Server-SAS has 64 GB of

RAM with several 7200 RPM enterprise drives.

We make comparisons when data is written and read back in

a random key order (sequential results are omitted for space).

506



We use db_bench.cc, which comes with LevelDB, to perform

random key order reads and random key order writes with

various value sizes on a single drive as well as multiple drives.

Every point on the x-axis in Figure 9 shows several different

experiments. For example, 120_B represents 1,000,000 KV

pairs, each with value size of 120 bytes and key size of 16

bytes, first written in random key order for one experiment and

then read back in random key order for another experiment.

The total data transfer of each run is 120 MB. Similarly, 256_B

represents another 1,000,000 KV pairs written and then read

back, each with a value size of 256 bytes (total data transfer

is 256 MB per run). It is also important to note that the y-axis

is in log scale so that high throughputs do not overwhelm

the plots. This happens because some of the server read

experiments with smaller value sizes fit mostly in the server

RAM and avoid many of the slower disk accesses. For read

tests, the LevelDB benchmark first loads (writes) some data to

read but does not purge any system caches before measuring

the reads. It is likely that some (or, for small tests, all) of these

previously written/loaded key-value pairs already exist in the

server’s cache when read performance is measured. Significant

modifications to the LevelDB benchmark or adjustments to

default settings, to hinder the servers by eliminating this

caching, are beyond the scope of this research.

Looking at Figure 9, we notice that as the value size

increases, the server’s random write throughput decreases

��	


�


�
�

�
��

�
���


��
�


���
�


�
�
�



��
�

���
�

���
�

���
�

�	�
��


��
��

	��
��

���
���

��	
���

���
���

���
�

��
��
��
��
	


��
��




��
��
�
��
��
��
���
��
��

����������

�
���
�����

�
���
��
��


��������������
�����


��������������
��
��

�������������
�����

�������������
��
��


Fig. 9. Random Order Key (RND) Read (RD) and Write (WR) throughput
comparison of a Kinetic Drive (KD), Server-SATA, and Server-SAS using
One Drive (1D).

����

��

���

����

�����

���
���
���

���
	
�
���

���
	
�
���

�	�



�	�




	�



�	�



��	
�


��	
�


�
	
�


���
	�


���
	�


���
	�


�	�



��
��
��
��
	


��
��




��
��
�
��
��
��
���
��
��

����������

��	���	��	��
��	���	��	��

�����������	���	��	��

�����������	���	��	��
����������	���	��	��
����������	���	��	��

Fig. 10. Random (RND) Read (RD) and Write (WR) throughput comparison
of Kinetic Drives (KD), Server-SATA, and Server-SAS using Two Drives
(2D).

below 1 MB/sec. The larger value sizes were so slow that

we were forced to abandon those tests. As the value size

increases, so does the amount of data per experiment, the

number of LevelDB files, the amount of key-value pair sorting,

and overall disk activity. Moreover, irrespective of different

RAM sizes, the write throughput for Server-SATA and Server-

SAS both decline at similar rates as we increase the value size.

When key-value pairs are written, they initially are written to

a 4 MB memtable. Subsequently, the memtable is flushed to

the drive in the form of 2 MB SSTables. Since such a limited

amount of data is written in each memtable before flushing, the

RAM of Server-SATA and Server-SAS has a limited impact

on write performance.

The most interesting observation is that the Kinetic drive

(Figure 9) can sustain higher throughput than a LevelDB

server for large values sizes. Unlike the open-source API,

the Kinetic drives themselves are closed-source black boxes.

Therefore, the following hypothesis to explain their relative

performance is difficult to verify. We assume that there is

more write amplification during random key order writes for

the default LevelDB configuration on the servers than for the

optimized LevelDB in the Kinetic drive [14]. It is likely that

the memtable and SSTable size is larger for Kinetic drives

compared to LevelDB’s default. This increased table size

would create fewer files thus reducing read and write overhead.

However, for small value size experiments, the servers with

their large RAM size for reads and faster CPUs for writes can

����

��

���

����

�����

���
	
�
���

���
	
�
���

���
	
�
���

�	�



�	�




	�



�	�



��	
�


��	
�


�
	
�


���
	�


���
	�


���
	�


�	�



��
��
��
��
	


��
��




��
��
�
��
��
��
���
��
��

����������

��	���	��	
�
��	���	��	
�

����������	���	��	
�
����������	���	��	
�

Fig. 11. Random (RND) Read (RD) and Write (WR) throughput comparison
of Kinetic Drives (KD) and Server-SAS using Four Drives (4D).

��

���

����

�����

���
���
��	

�
�
���
��	


��
���
��	

���
�

���
�


��
�

���
�

���
��

���
��

�
�
��

���
���

�
�
���


��
���

���
�

��
��
��
��
	


��
��




��
��
�
��
��
��
���
��
��

����������

������������
������������

��������������������
��������������������

Fig. 12. Random (RND) Read (RD) and Write (WR) throughput comparison
of Kinetic Drives (KD) and Server-SAS using Eight Drives (8D).

507



easily outperform a Kinetic drive. Overall, even ignoring the

small experiments that mostly fit in server RAM, we can also

conclude that read operations achieve higher throughput than

writes for all of the three systems. During reads, the drives

simply have to deliver data that has already been sorted by

the systems. When there are many writes, LevelDB has to

do compaction and level management that introduces write

amplification affecting the throughput.

We extend these experiments by adding drives, striped in

software RAID-0, to Server-SATA and Server-SAS as shown

in Figures 10, 11, and 12. Only Server-SAS has enough disks

for four and eight drive tests. The multiple drive Kinetic

results in these figures are a linear extrapolation of the single

drive results in Section IV-C. By conducting simultaneous

parallel experiments on all four Kinetic disks, we verified that

there is no individual performance degradation. Therefore, we

assume the load is balanced evenly across the independent

disks and the performance will scale linearly until the Kinetic

enclosure’s 10 Gbps network link becomes a bottleneck. While

the LevelDB servers do show throughput increases in some

cases as we add more disks, their performance does not scale

up as much as expected.

In these figures, the larger memory size of Server-SAS

allows it to demonstrate significantly higher read through-

put than the Kinetic drives or Server-SATA for small value

sizes. However, Server-SATA and Server-SAS both reflect

a "memory cliff" trend in read throughputs. After the read

throughputs increase continuously, they suddenly drop beyond

a certain value size. As the amount of data transferred in

each experiment increases with value size, the system memory

cannot continue to hide slower disk accesses and throughput

drops. At these points, the Kinetic drives usually take over and

start giving better throughputs than either of the servers.

VI. LATENCY TESTS OF KINETIC DRIVES AND LEVELDB

SERVERS

Latency is a measure of the delay between when data is

requested and when it actually arrives. This is critical for Qual-

ity of Service (QoS) of time sensitive applications. Moreover,

latency is an indicator of the response time of a server. Users

often dislike long wait times for their applications.

Read Latency of Kinetic Drives Following Random and
Sequential Order Writes: Here we obtain and compare latency

results for random key order reads following random key order

writes or sequential key order writes (described in Section IV-

A) on the Kinetic drives, Server-SATA, and Server-SAS. There

are three different sets of tests conducted:

• Random Read Latency for Kinetic Drives after 100 GB

or 3.7 TB of Random Order or Sequential Order Writes

• Random Read Latency for Server-SATA after 100 GB of

Random Order or Sequential Order Writes

• Random Read Latency for Server-SAS after 100 GB of

Random Order or Sequential Order Writes

Figure 13 presents a histogram of our Kinetic results. We

first perform the 100 GB Kinetic sequential key order write

operation as described in Section IV-A and then record latency

��

�����

����

�����

����

�����

����

�����

����

��	��
 ���	��
 ���	��
 ���	��
 ���	��
 ���	��
 ���	
�
 �
�	��
 ���	��
 ���	���
 ����

	

��

��

�
��

�
�

��
�

��

����������������	
���
�

������������������������� �������
������������� ����������� �������
��������
�!�������������� �������
��������
�!�� ����������� �������

Fig. 13. 100 GB Random Read after Sequential Order Writes (SW) or
Random Order Writes (RW) on Kinetic Drives

as we read 100 GB in random key order by requesting 100,000

key-value pairs (writes and reads use value size of 1 MB and

key size of 16 bytes). Having recorded the time it takes to

successfully complete each random read request, we put these

latencies in different histogram bins to determine a count,

or frequency of accesses, in that latency range. We obtain

relative frequencies by dividing the number in each bin by the

number of key-value pairs (100,000 in this case). We repeat

this process for various write patterns to complete Figure 13.

Looking at Figure 13, we can observe that the read latencies

are higher when the Kinetic drive is full, and reads following a

drive filled with random order writes show the highest latency.

In the figure, we group all latencies above 100 ms, which

account for approximately 4-5% of the reads, into the right-

most bin. For a read request, LevelDB may have to read files

from multiple levels before it finds the correct KV pair. Reads

satisfied by early levels like L0 or L1 will have lower latencies

than requests that still have to access files in early levels but are

not satisfied until L5, for example. The more data we write

to the drive, the more data resides in higher/later levels of

LevelDB, and reads from these higher levels cause the higher

latencies.

Next, we run similar latency tests with the LevelDB bench-

marking program, db_bench.cc, on Server-SATA and Server-

SAS and plot our findings in Figure 14. From these results,

we observe that a substantial number of read latencies for

��

����

����

����

���


����

���	

������ ������� ������� ����	�� �	��
�� �
����� ������� ����
�� �
����� �������� ����

��
�	
���
��
��
��
��

�
�

�	��
����
����������	
���
�

������������������������������
������������������������������
�����������������������������
�����������������������������

Fig. 14. 100 GB Random Read after Sequential Order Writes (SW) or
Random Order Writes (RW) on Server-SATA and Server-SAS

508



Server-SAS fall in the "[0,10]" bin, which implies that Server-

SAS tends to be faster for read operations than Server-SATA.

These findings are again reflective of the larger memory size

of Server-SAS (64 GB vs. 12 GB in Server-SATA), its faster

memory (2100 MHz DDR4 vs. 1600MHz DDR3 in Server-

SATA), and its faster HDD (7200 RPM vs. 5900 RPM in

Server-SATA). Compared to Figure 13, we see that Server-

SATA has many more >100 ms reads than the Kinetic drive.

This trend is due to the same optimizations we describe in

the previous section that reduce read and write amplification

in the Kinetic drive compared to the default LevelDB server.

Seagate’s Kinetic optimizations allow it to outperform Server-

SATA, which has a similar hard drive, while the obvious

hardware advantages of Server-SAS allow it to dominate over

the other systems.

Overall, we can conclude that the amount of data written

and the amount of randomness in that data affect the latencies

for subsequent read operations on these Kinetic drives.

VII. YAHOO CLOUD SERVING BENCHMARK

In addition to the micro benchmarks discussed in the previ-

ous sections, we choose a popular macro benchmark, Yahoo

Cloud Serving Benchmark (YCSB) [15], to simulate several

more realistic application-level workload mixes. Because there

is no direct LevelDB interface to YCSB, we initially tried to

use Mapkeeper [16] as the key-value store with LevelDB as

the storage backend. Unfortunately, Mapkeeper is no longer

supported by YCSB. After much effort, we were only able to

make it work with an older version of YCSB, but even then

there were file locking issues after the YCSB load phase that

prevented the run phase from working correctly.

Another key-value store, Riak KV [17], can use an opti-

mized version of LevelDB as its storage backend. Riak is

under active development and works with the newest version

of YCSB. Our YCSB testing for a normal hard drive uses a

single Riak node configured on Server-SATA to use LevelDB

as the backend and the 4 TB SATA drive as the data storage

location. Because we use only one node, we set the number

of data copies from the default of three to only one. All other

parameters are left as their defaults. We first run the Riak tests

with the YCSB client running locally on the Riak node itself.

Then, in order to add a network layer similar to that used by

the Kinetic drives, we repeat the experiments with the YCSB

client sending data over a Gigabit Ethernet network to the

Riak node from an identical machine (i.e., the same specs as

Server-SATA). These tests use YCSB version 0.12.0 and Riak

version 2.2.0. For YCSB tests on the Kinetic drives, we use

the version that comes with the Kinetic Java Tools software

[18]. Both the normal HDD and the Kinetic YCSB testing use

the same workload parameters for a fair comparison.

YCSB includes the following six workload patterns: Work-

load A is a heavily updated workload with a 50/50 read/write

ratio. Workload B is a read-mostly workload with a 95/5

read/write ratio. Workload C is 100% reads. Workload D has

5% updates and 95% reads, but the recently updated records

are the ones that are read the most; thus, it is a read-latest

workload. Workload E queries short ranges of records, but the

scan command is not yet implemented on the Kinetic drives,

so we do not use this workload. Workload F is half reads

and half read-modify-write commands where a record is read,

updated, and written back.

The YCSB load phase of Workload A is 100% writes, and

we follow that with a run of Workloads A, B, C, D, and then

F. We insert a pause of five minutes between each workload

to allow the system some idle time for LevelDB compaction

or other internal processes.

Figure 15 shows the average throughput while loading and

running these workloads with a value size of 1 MB. For each

workload, 50 GB of data is transferred. In this case we see

that a Kinetic drive is able to consistently outperform the

Riak/LevelDB node for both the load and run of Workload A

as well as for the run of Workload F. For runs of Workloads

B, C, and D, the Kinetic drive shows throughput similar to or

slightly worse than that of the Riak node when its YCSB test

is run locally. When YCSB is run over the Gigabit network to

the Riak node, its performance declines, and the Kinetic drive

shows similar or slightly better throughput for those work-

loads. The Riak node shows poor performance in workloads

with large amounts of updates/writes like Workloads A and F.

Figure 16 displays the results for a value size of 4 KB. In

order for the experiment to complete in a reasonable amount

of time, the data transferred per workload was reduced to 5

GB. Here we see that the Kinetic drive becomes I/O bound due

to the large number of small accesses while the Riak server,

��

���

���

���

���

���

���

�	�

�	�

���
���

���
��

���
�	

���
�


���
��

���
��

��
��
��
��
	


��
��




��
��
�
��
��
��

��������������������������	
����

�
���

���
��
�
�������������
��

�
������������������

Fig. 15. Average throughput for loading phase and running phases of different
YCSB workloads using 1 MB value size on Kinetic drive vs. Riak server with
LevelDB backend.

��

����

��

����

��

����

��

���
���

���
��

���
�	

���
�


���
��

���
��

��
��
��
��
	


��
��




��
��
�
��
��
��

��������������������������	
����

�
���

���
��
�
�������������
��

�
������������������

Fig. 16. Average throughput for loading phase and running phases of different
YCSB workloads using 4 KB value size on Kinetic drive vs. Riak server with
LevelDB backend.

509



with its larger amount of RAM, is able to better organize

these small transfers for more efficient disk access. However,

the performance of both the Kinetic drive and the Riak node

is far lower with 4 KB values than with 1 MB values. Our

findings with YCSB confirm our findings of the Section IV-C.

This poor performance with small I/Os is typical of rotating

mechanical media and is due to the disk seek time. Again, the

Riak tests suffer a slight drop in performance when run over

the network compared to when run locally.

In summary, the YCSB tests use a more realistic config-

uration to reaffirm the earlier micro benchmark results. For

smaller value sizes, the full server is easily able to show higher

performance; but, for larger value sizes, the Kinetic drive

can perform surprisingly well, especially in write-intensive

workloads where it outperforms the server for similar reasons

as discussed in Section V.

VIII. CONCLUSION

Based on our study, we conclude that our sample Kinetic

drives provide an average read throughput of 78 MB/sec and

an average write throughput of 63 MB/sec with a large value

size. These drives scale well in a data center environment,

because each drive acts as a tiny independent key-value storage

server. Moreover, new features such as P2P data transfer are

unique to Kinetic drives. However, the tested first generation

Kinetic drives do have significant bandwidth limitations due

to inadequacies of the internal processor. This internal CPU

shows nearly 100% utilization during many of our tests where

the hardware should otherwise be able to produce higher

throughput. Seagate is aware that the internal CPU of these

sample drives is a performance bottleneck and newer versions

of their Kinetic drives, should they become widely available,

will have a faster processor. Despite this limitation, for some

applications with large value sizes or many searches for keys

that do not exist, the Kinetic drives can outperform a SATA-

based mid-range server and provide better scalability.

ACKNOWLEDGMENTS

This work was supported in part by the Center for Research

in Intelligent Storage (CRIS), which is supported by National

Science Foundation grant no. IIP-1439622 (July, 2014 - Au-

gust, 2019) and member companies. Any opinions, findings

and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views

of the NSF. This work was partially supported by Hankuk

University of Foreign Studies Research Fund. The authors

would like to thank Seagate for their support of this project

and, in particular, Bryan Wyatt for his technical assistance.

REFERENCES

[1] M. Walker, “Structured vs. unstructured

data: The rise of data anarchy,” http:

//www.datasciencecentral.com/profiles/blogs/

structured-vs-unstructured-data-the-rise-of-data-anarchy,

2012, accessed: 2017-6-27.

[2] J. Mallory, “Save your data deep storage considerations,”

http://web.stanford.edu/group/dlss/pasig/PASIG_

March2015/20150313_Presentations/Mallory_Isilon.pdf,

2014, accessed: 2017-6-27.

[3] D. Gascon and G. White, “Managing unstructured

data in object-based storage,” http://www.dell.com/

downloads/global/power/ps4q10-20100472-white.pdf,

2010, accessed: 2017-6-27.

[4] J. Arnold, “Kinetic motion with seagate and

openstack swift,” https://swiftstack.com/blog/2013/

10/22/kinetic-for-openstack-swift-with-seagate/, 2013,

accessed: 2017-6-27.

[5] “Kinetic open storage project,” https://www.openkinetic.

org/, 2016, accessed: 2017-6-27.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels, “Dynamo: Amazon’s highly available

key-value store,” SIGOPS Oper. Syst. Rev., vol. 41,

no. 6, pp. 205–220, Oct. 2007. [Online]. Available:

http://doi.acm.org/10.1145/1323293.1294281

[7] “How we made github fast,” https://github.com/blog/

530-how-we-made-github-fast, accessed: 2017-6-27.

[8] “Rocksdb,” http://rocksdb.org/, accessed: 2017-6-27.

[9] “Seagate’s kinetic will impact object storage,”

https://go.forrester.com/blogs/seagates-kinetic-will_

impact-object-storage-and-data-driven-applications,

2013, accessed: 2017-9-27.

[10] Google, “Leveldb - lightweight database library by

google,” https://github.com/google/leveldb, 2016, ac-

cessed: 2017-6-27.

[11] M. Shetty, “Seagate kinetic open storage platform,”

http://www.snia.org/sites/default/files/MayurShelty_

Seagate-Kinetic.pdf, 2014, accessed: 2017-6-27.

[12] Seagate, “Seagate kinetic hdd,” http://www.seagate.

com/www-content/product-content/hdd-fam/kinetic-hdd/

en-us/docs/100764174b.pdf, 2014, accessed: 2017-6-27.

[13] S. Seagate, Supermicro, “Reference de-

sign: Scalable object storage with seagate

kinetic, supermicro, and swiftstack,” https:

//swiftstack.com/wp-content/uploads/2015/05/

KineticReferenceDesign-SwiftStackSupermicroSeagate.

pdf, 2015, accessed: 2017-6-27.

[14] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Wisckey:

Separating keys from values in ssd-conscious storage,”

Trans. Storage, vol. 13, no. 1, pp. 5:1–5:28, Mar. 2017.

[Online]. Available: http://doi.acm.org/10.1145/3033273

[15] K. Risden, “Yahoo cloud serving benchmark,” https://

github.com/brianfrankcooper/YCSB/wiki, 2014, accessed:

2017-6-27.

[16] “Mapkeeper,” https://github.com/m1ch1/mapkeeper/wiki,

2014, accessed: 2017-6-27.

[17] “Riak,” http://docs.basho.com/riak/kv/2.2.0/, 2014, ac-

cessed: 2017-6-27.

[18] “Kinetic java tools,” https://github.com/Seagate/

kinetic-java-tools, 2014, accessed: 2017-6-27.

510


